

HOW DOES MUTATION CHANGE ALLELE FREQUENCIES?

Assume: a single autosomal locus with 2 alleles.

Frequency (**A**) = p Frequency (**a**) = q

•Suppose that **A** mutates to **a** at rate u: **A** $\rightarrow a = u$

•And **a** mutates to **A** at a rate $v: a \longrightarrow A = v$

•Example:
If p and q = 0.5,
And
$$u = 0.0001$$
 and $v = 0.00001$
 $p_{t+1} = p_t (1-u) + (1-p_t) (v)$
 $p_{t+1} = 0.5 (1 - 0.0001) + (1 - 0.5) (0.00001)$
 $= 0.499955$

DEFINITION OF SELECTION

 Any consistent difference in fitness among <u>phenotypically</u> different biological entities.

SOME IMPORTANT POINTS

- 1. Natural selection is not the same as evolution.
- 2. Natural selection is different from evolution by natural selection.
- 3. Natural selection has no effect unless different phenotypes also differ in genotype.
- 4. Natural selection is variation in average reproductive success (including survival) among phenotypes.

IMPORTANT PARAMETERS FOR STUDYING SELECTION IN MENDELIAN POPULATIONS

Absolute Fitness (W) = Total number of offspring produced

- = (Probability of survival to maturity) x (mean number of successful gametes)
- Relative Fitness = Absolute Fitness (W) / Mean Fitness (W)

$$\overline{W} = p^2 W_{AA} + 2p(1-p) W_{Aa} + (1-p)^2 W_{aa}$$

- Selection Coefficient (s) = Fitness disadvantage to homozygous genotype: W_{aa} = 1-s
- -Dominance Coefficient (h) = Proportion of s applied to the heterozygous genotype: $W_{Aa} = 1-hs$

N	NATURAL SELECTION OPERATING ON A SINGLE LOCUS					
А	ssume:	1) 2)	Discrete generations No evolutionary forces other than selection			
	<u>Genotype</u>		AA	Aa	<u>aa</u>	
	Frequency before selection		p²	2р(1-р)	(1-p)²	
	Fitness		WAA	W _{Aa}	W _{aa}	
	Frequency after selecti	on	$p^2 W_{AA} / \overline{W}$	2p(1-p) W _{Aa} / W	(1-p) ² W _{aa} / W	
	The new frequency of A allele after selection,					
	p' = freq(AA after selection) + ½freq(Aa after selection)					
					Box 6.5 in Z&E	

CHANGE IN ALLELE FREQUENCIES PER GENERATION

$$p' = \frac{p^2 w_{AA} + pq w_{Aa}}{\overline{w}}$$

$$\Delta p = p' - p$$

$$\Delta p = \frac{p^2 w_{AA} + pq w_{Aa}}{\overline{w}} - p = \frac{p(pw_{AA} + qw_{Aa}) - p\overline{w}}{\overline{w}}$$

$$\overline{w} = p^2 w_{AA} + 2p(1-p)w_{Aa} + (1-p)^2 w_{aa}$$

CASE 1: ADVANTAGEOUS ALLELE WITH DIFFERING
DEGREES OF DOMINANCE
FITNESSES:
$$W_{AA} = 1 \qquad W_{Aa} = 1 - hs \qquad W_{aa} = 1 - s$$
$$\Delta p = \frac{spq[h(1 - 2q) + q]}{1 - 2pqhs - sq^2}$$

ESTIMATING SELECTION: MARK – RECAPTURE EXPERIMENT

 Frequencies of three peppered moth forms in a sample from Birmingham. The observed numbers are the actual numbers *recaught*, the expected numbers are the numbers that would have been *recaught* if all forms survived equally. Data from Kettlewell (1973).

Numbers Recaptured

	Genotype	Observed	Expected	Survival Rate
typica	сс	18	35.97	0.5
insularia	Сс	8	8.57	0.93
carbonaria	СС	140	121.46	1.15

SELECTION AND DOMINANCE COEFFICIENTS					
	Genotype	hotype Absolute fitness scaled to 1.0			
	cc Cc CC	0.43 0.81 1.00	W_{cc} = 1-s W_{Cc} = 1-hs W_{CC} = 1		
 Selection Coefficient (against homozygotes): s = 1 - 0.43 = 0.57 					
Dominance Coefficient:					
hs = 1 - 0.81 = 0.19 h = 0.19 / s = 0.19 / 0.57 = 0.33					

